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I. INTRODUCTION

The deoendence of the threshold voltage and radiation response of

n-channel AlGaAs/GaAs MODFETs (modulation doped field-effect transistors)

on acceptor doping density has been described previously (Refs. 1-3).

These analyses have now been extended to describe the depencence nf MODFET

subthreshold I-V characteristics on acceptor doping density.

The band structure of a typical AlGaAs(n)/GaAs heterojunction with

Schottky barrier, o m' at the gate, and a spacer layer at the interface

under bias Vg, is shown in Fig. 1. In the depletion layer approximation,

the donors and acceptors are assumed to be completely ionizcd in the doped

AlGaAs layer d, the spacer layer a, and in the depiction layer W. The

doping densities ND and NA are assumed constant. The quasi-two-dimensional

electron eigenstates at the interface are solved for using a triangular

potential well, and only the lowest subband is included in the

calculation. A delta-function channel charge distribution at the average

channel width is assumed. Band bending from the interface at (d + a) to

the edge of the depletion region (W + d + a) is the difference of the

position of the conduction band relative to the Fermi level in the GaAs far

from the interface (E /2 + bulk and the Fermi level Ef relative to the

bottom of the two-dimensional channel.

Under the restrictions imposed by these assumptions, Poisson's

equation may be integrated across the structure to obtain the applied gate

voltage as a function of device geometry, doping densities, and channel

charge ns:

Vg = V0 + f(ns )

where V0 is the difference between the Schottky barrier height and the sum

of the band offset and potential drop across the doped AlGaAs layer due to

the ionized donors. The function f(ns) may be written as:
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f(ns ) = (q/E)(d + a)(NAW + ns ) + Co(NAW + ns) 2/3

+ (kT/q)In[exp(ns/nc ) - 1] (2)

where CO is a function of the Planck constant, the carrier effective mass,

the elemental charge, and the permittivity of AIGaAs and GaAs, assumed

identical. C0 is equal to -1.7 - 10- 9 V-cm 4 /3 . Similarily, the charge

density nc is a function of physical constants and the effective carrrier

mass and is equal to -8.4 - 1011 cm-2 . The quantities q, E, k, and T are

elemental charge, AlGaAs(GaAs) permittivity (assumed identical), Boltzmann

constant, and absolute temperature. A discussion of the dependence of the

depletion1 width W on acceptor density has bten given elsewhere (Ref. 1).

In section II we describe the mathematical properties of the function

f(ns) , near threshold. In section II we exploit these properties to derive

the subthreshold characteristics of these devices.
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Fig. 1. Band Diagram of' a Typical AiGaAs/GaAs MNET
with Schottky Gate, under bias Vg9.
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11. MATHEMATICAL PROPERTIES NEAR THRESHOLD

At threshold, the channel density may be defined as equal to the

acceptor density NA times the average channel width zav , which may be

calculated in the triangular-well approximation using variational wave

functions (Refs. 4, 5). This definition of threshold is equivalent to that

used for, MOSFETs (metal-oxide semiconductor field-effect transistors).

Calculation of the threshold carrier density is described elsewhere (Ref.

1). In the subthreshold region, where n. -NAzav '" NAW, Eq. (2) may be

approximated as

f(ns ) = (q/)(d + a)NA + Co(NAW)2/
3 + (kT/q)ln(ns/n c ) (3)

In Fig. 2, f(ns) versus ns is shown for two extremes of the acceptor

density. The solid curves are the results of Eq. (2), and the dashed

curves are the results of Eq. (3).

inf dpproximation is almost iuentical to the exact results to channel

densities up to 10 10 cm-2 . The approximate results do not diverge

significantly from the exact results until the channel density is above

1  cm-2 . Letting

V V(J + (qc)(d + a)NAW + Co(NAW) 2 3 k4)

the applied gate voltage in the subthreshold region, Vgsub, is related to

the channel charge in the following way:

Vgsub = VO' + (kT'q)ln(nsinc). (5)

9 mI llml
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I I. SUBTHRESHOLD I-V CHARACTERISTICS

In the gradual channel approximation, charge coritrul is determined by

the effective potential in the channei:

V(x) = V gsub - Vc(X) (6)

where V c(x) is the channel voltage under the gate at point x. Using Eqs.

(5) and (6) we solve for the carrier density in the channel:

ns(X) = ne exp(q/kT)[Vgsub - VO  - Vc(x)J} (7)

The form of Eq. (7) allows the source-drain current to be calculated in the

usual way (Ref. 6). The result is

Isub =  kTu(Z.,'L)n(O){1 - exp[-q(V, - Vs)/kT)) (8)

where

n(O) = ncexp[q(Vgsu b  - VO '  - VS).kTJ (9)

u L channel mobility

Z z channel width

L = channel length

Equation (8) is the MODFET equivalent of the charge sheet subthreshold

current derived by Brews (Ref. 7). In the subthreshold region (i.e., the

channel charge in the whole channel is of the order of the threshold

carrier density), the source-to-drain voltage is small, and the

exponentials containing these terms may be linearized.
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ofC magr.it ,j2 over, this range for a given applied gate voltage. For

acceptor ,;p irig densities well above this range, the subthreshold I-V

characteristics will shift some 0.8 to 0.9 V as showt.

Tho 'kibt.r'eshold conductance, ir the limit of' small drain-source

voltaEu -r,J zero drair-source resistance, is given by the subthreshold

current divided by the dr-air-source voltage and, therefore, has the same

dependence or V[hS arid V 9 as the subthreshold current, as shown in Fig. 3.

The subthreshold tr"irscorductance, under, the same limitations, is giver, b

the subthr'oshold current divided by kT/q, which also has the same

furictionial Corm as the subthreshold current.
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Fig. 3. MOFET Subthreshold Current versus Applied Gate Voltage.
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* IV. SUMMARY

We have developed a triangular-well, one-subband depletion layer model

to describe the dependence of MODFET subthreshold I-V characteristics on

AlGaAs and GaAs doping densities and device geometry. The description of

the role of acceptor doping on I-V characteristics is important for an

accurate description of device performance, especially when MODFETs are

used in complementary devices. As has been pointed out previously

(Ref. 8), intentional doping of the GaAs may be used to tailor device

characteristics for enhanced device performance.
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